
Pareto NBD Bayesian Style

Chunyi Zhao

Two Six Capital

April 15, 2016

Chunyi Zhao (Two Six Capital) Pareto NBD MCMC April 15, 2016 1 / 21



Overview

1 Pareto/NBD

2 Maximum Likelihood Estimation

3 Markov Chain Monte Carlo
The Bayesian point view
Metropolis-Hastings algorithm
Gibbs sampler

Chunyi Zhao (Two Six Capital) Pareto NBD MCMC April 15, 2016 2 / 21



Pareto/NBD Model

Assumption

[x |λ, τ,T ] ∼ poisson(λt), t = min(τ,T )
[τ |µ] ∼ exp(µ)

Choice of Prior

[λ|r , α] ∼ gamma(r , α)
[µ|s, β] ∼ gamma(s, β)

Nice choice of prior leads to close-form likelihood and other
convenient consequences.
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Pareto/NBD Data structure

Data

Dimension: customer i for i ∈ {1 · · ·N}
Individual level summary statistics: xi , txi ,Ti

Latent variables

Purchase rate: λi
Lifetime: µi

Heterogeneity Parameters

r , α
a, β

DAG

Chunyi Zhao (Two Six Capital) Pareto NBD MCMC April 15, 2016 4 / 21



Maximum Likelihood Estimation

Likelihood L(θ|D)

Likelihood is probability of observing the given data as a function of θ.
L(θ|D) = P(D|θ)

MLE In English

Assume θ, θ∗,L(θ∗|D) > L(θ|D), this means given the observed data θ∗ is
more ”likely” to be the values for model parameters.

Estimation

Maximize likelihood ≡ Maximize log-likelihood ≡ Minimize
-(log-likelihood)

The problem of local vs global minimum

Choice of minimizer
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Pareto NBD likelihood

Latent variable level likelihood: P(x , tx ,T |λ, µ)
τ > T :

L(λ, µ|τ > T , x , tx) =
λx · txx−1 · e−λtx

Γ(x)
· eλ(T−tx) · e−µT

tx < τ < T :

L(λ, µ|τ < T , x , tx) =
λx · txx−1 · e−λtx

Γ(x)
· eλ(τ−tx) · µe−µτ

Heterogeneity parameter level likelihood, i.e. the probability of
individual’s transaction given r , α, s, β for a random customer

P[X = x |r , α, s, β,T ] = P[X = x |r , α, τ > T ]P[τ > T |s, β]

+

∫ T

0
P[X = x |r , α, τ > t]f(t|s, β)dt

”Nice” heterogeneity params distribution ⇒ close-form solution.
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The Bayesian point view

Frequentist: one answer, Bayesian: a set of answers with different
weights

Bayes Theorem

P(θ, φ|D)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(D|θ) ·

prior︷ ︸︸ ︷
P(θ|φ) ·

hyper︷︸︸︷
P(φ)

P(D)︸ ︷︷ ︸
marginal

Likelihood encodes our belief on the relationship among the
parameters and the data.

Prior encodes our belief on the parameters. ”Nice” = Conjugate.

Hyperparameter controls latent variables, usually set flat and known.

Posterior indicates the how well the reality fits the model.

Goal: simulate posterior so that we can learn more from the model.
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Markov Chain Monte Carlo

Markov Process

Mathematically, given a sequence of random variables {X1,X2, · · · ,XT}
representing a stochastic process, a process has the Markov property if:
P(Xt+1 | X1,X2,X3, · · ·Xt) = P(Xt+1 | Xt)

Get posterior with MCMC

By constructing a MCMC whose stationary state is the desired
distribution, i.e. the posterior, we are effectively drawing each iteration
from the posterior once MCMC converges.

How to implement MCMC

Metropolis-Hastings algorithm, and its special case Gibbs sampler
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Metropolis algorithm

A random walk that uses an acceptance/rejection rule to converge to
the specified target distribution.

What we need

Posterior distribution P(θ∗|D),P(θt−1|D)
Proposal distribution/jumping distribution Jt(θ

∗|θt−1)
Proposal distribution needs to be symmetric!

Algorithm

Initialize the chain with θ0.
For t = 1, 2, · · ·

Sample θ∗ from Jt(θ
∗|θt−1).

Calculate the ratio r = P(θ∗|D)

P(θt−1|D)

Accept probability α = min(1, r)
Implementation: generate u ∼ uniform(0, 1). If r < u, then accept θ∗,
else keep θt−1
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Why does Metropolis algorithm work?

The goal of MCMC is to construct a Markov chain such that its
unique stationary distribution is the posterior distribution.

Stationary distribution of a Markov chain: the Markov chain converges
to a state that θt for ∀t has the same distribution.
Goal: prove P(θt = θ∗) = P(θt−1 = θ∗)

Assume θa, θb s.t P(θb|D) > P(θa|D).

P(θt−1 = θa, θt = θb) = P(θa|D) · Jt(θb|θa) · r , r = 1 due to our
assumption

P(θt−1 = θb, θt = θa) = P(θb|D) · Jt(θa|θb) · r , r =
( P(θa|D)
P(θb|D)

)
By doing some math we will have
P(θt−1 = θb, θt = θa) = P(θa|D) ∗ Jt(θa|θb) = P(θt−1 = θa, θt = θb),
since the proposal density Jt(·|·) is symmetric.
P(θ|D) is the same despite the choice of θ ⇒ the posterior distribution
P(θ|D) is the stationary distribution of the Markov Chain of θ.
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Metropolis Hastings algorithm

Metropolis-Hastings algorithm relaxes the constrain on the proposal
distribution, so that J(·|·) is not required to be symmetric

Instead, change r = P(θ∗|D)/Jt(θ∗|θt−1)
P(θt−1|D)/Jt(θt−1|θ∗) . The rest of the algorithm

remains the same.

See appendix for why MH algorithm works.

Gibbs sampler is a special case of MH, where r = 1.

J(θ∗|θt−1) = P(θ∗j |θt−1
−j ,D), θ∗−j = θt−1

−j

r =
P(θ∗|D)/Jt(θ

∗|θt−1)

P(θt−1|D)/Jt(θt−1|θ∗)
=

P(θ∗j , θ
∗
−j |D)/P(θ∗j |θ

t−1
−j ,D)

P(θt−1
j , θt−1

−j |D)/P(θt−1
j |θt−1

−j ,D)

=
P(θ∗j |θ

t−1
−j ,D)P(θt−1

−j |D)/P(θ∗j |θ
t−1
−j ,D)

P(θt−1
j |θt−1

−j ,D)P(θt−1
−j |D)/P(θt−1

j |θt−1
−j ,D)

= 1
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Gibbs Sampler

Update certain parameter given rest of parameters according to
conditional posterior distribution.

When to use Gibbs sampler

When conditional posterior is well defined and easy to sample from.
⇒ Conjugate Prior

What we need

θ = {θ1, · · · , θJ}
[θj |θt−1

−j ,D]⇒ conditional posterior distribution of one parameter given
the rest of parameters at t-1.
Notice, at t, the above distribution is calculated with parameters that
are updated already at iteration t and parameters that are not yet
updated at t-1.

Algorithm

initialize θ(0)

For t = 1, 2, · · · , update θ
(t)
1 , θ

(t)
2 , · · · θ(t)

J in turn.
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From MCMC to posterior

The result of MCMC algorithm is a sample of posterior distribution.

Simple example, let’s look at the gamma data generating process.

xi
iid∼ gamma(α, β).

Histogram: bin the samples according to the value p.
Density:

∫∞
0

f (x) = 1⇒
∑N

i=0[b(i)− b(i − 1)]d(mid(i)), s.t d(mid(i))
has the same ratio given by frequency
Quantile: solve cdf F (x) = α where α is the quantile.

Credible interval: the subset of posterior parameter space C s.t∫
C f (θ|D)dθ = 1− α.

If θ∗L is the α/2 posterior quantile for θ, and θ∗U is the 1α posterior
quantile for θ, then (θ∗L, θ

∗
U)is a 100(1α)% credible interval for θ.

Which means, given the observed data there is a 1− α% probability
the true value of θ falls in to the above interval.

HPD interval: what if the density is highly skewed?

additional condition on C = {θ : f (θ|D) ≥ k}, k is the horizontal line
at 1− α.
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Convergence Diagnosis

”Burn-in”: discarding early iterations of the simulation runs ⇒
eliminating unrepresentative samples

”Thinning”: dependence of the iterations in each sequence
(within-sequence correlation) ⇒ achieving the effect of random draws.

Visualization:

Trace plot
Running mean plot
Auto-correlation plot: Auto-correlation pk is the correlation between a
certain draw and its k th lag.

Gelman and Rubin diagnostic

Running multiple chain from over-dispersed starting points. Calculating
within and between sequence variance (B, W) to approximate marginal
posterior variance (var(θ|D)).

Scale reduction factor R =
√

var(θ|D)
W . If R > 1, then further

simulations are needed.
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Pareto/NBD MCMC

A combined approach: Gibbs sampler for latent variables, and MH
algorithm for r , α, s, β

Original flavor: assumptions remain the same

[λi |τi , xi ,Ti , r , α] ∼ gamma(r + x , α + min(τ,Ti ))
[µi |τi , s, β] ∼ gamma(s, β + Ti ), τ > T ; gamma(s + 1, β + τi ), o.w .
[τi |txi ,Ti , λi , µi ] two cases based on P(τi > Ti |λi , µi ,Di )

Flip a coin with weight p = 1
1+µi/(λi+µi )[exp((λi+µi )(Ti−txi ))−1]

to decide
whether still alive at Ti

If alive τi = Ti + rexp(µi ) exponential is memoryless.
If dead τi ∼ Double truncated exponential distribution with mean
1/(λi + µi ) in [txi ,Ti ].
Derive the CDF of the above distribution.
Inverse sampling: generate u ∼ uniform(0, 1) solve F (x) = u, x is the
next step.
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Pareto/NBD MCMC: update hyper-parameters

Conjugate priors for gamma parameters (r , α), (s, β) are not easy to
sample directly from. ⇒ MH step

Let φ = {p, q, s, r} be the set of hyperparameters and θ = {λ, µ} be
the latent variables. The posterior
P(φ|D) ∝ P(D|φ) · P(φ) ∝ P(D|θ) · P(θ|φ)

For a gamma process: data x1, · · · , xn
iid∼ gamma(α, β)

P(X |α, β) ∝ Pα−1exp(−βS)

(Γ(α)rβ−α)n

where P =
∏n

i=1 xi ,S =
∑n

i=1 xi
[α|p, q] ∼ gamma(p, q), [β|r , s] ∼ gamma(r , s)

P(φ|D) ∝ Pα−1·exp(−βS)
(Γ(α)rβ−α)n · α

p−1 · exp(−qα) · βr−1 · exp(−Sβ)

BTYDplus approach: Slice Sampling (Neal R.M. 2003).
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Pareto/NBD MCMC Continued

New flavor: purchase rate and lifetime are correlated
Individuals’ purchase rates and dropout rates follow a multivariate
lognormal distribution.[

log(λ)
log(µ)

]
∼ MVN

(
β0 =

[
βλ
βµ

]
, Γ0 =

[
σ2
λσλµ
σµλσ

2
µ

] )
(1)

Algorithm

Initialize the algorithm with θ0
i at the individual level. θi =

[
λi
µi

]
For each individual,

sample zi , i.e. whether alive at Ti , according to P(τi > Ti |λi , µi ,Di )
If dead, sample τi using a truncated exponential
MH step ⇒ Update θt−1

i using posterior P(λi , µi , zi , τi |xi , txi ,Ti )
(likelihood · prior)
MH step ⇒ Update [βt

0, Γ
t
0] according to standard multivariate normal

regression update.
* Draw θti from MVN(βdi , Γ0) where di is individual level covariates
θi = βdi + ei , where ei ∼ MVN(0, Γ0)
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Pareto/NBD MCMC: predicative power tentative
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References and Further Reading

Makoto Abe: ”Counting Your Customers” One by One: A Hierarchical
Bayes Extension to the Pareto/NBD Model

Lawrence Rabiner: A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition

Daniel Fink: A Compendium of Conjugate Priors

Gelman et al: Bayesian Data Analysis

Google: conjugate prior; sum of iid exponential is gamma; memoryless
property of exponential...
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The End
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Appendix A: Conjugate Priors

Idea of conjugacy: the posterior and the prior distribution lives in the
same family. In this case, the prior is called the conjugate prior for the
likelihood.

The exponential family basically covers the distribution we usually
use. All distributions in exponential family when used as likelihood
have conjugate priors.

Here are a couple conjugate relationships we used in our models:

Bernoulli likelihood has beta as conjugate prior, and beta posterior.
Poisson likelihood has gamma as conjugate prior, and gamma posterior.
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