Pareto NBD Bayesian Style

Chunyi Zhao

Two Six Capital

April 15, 2016

Chunyi Zhao (Two Six Capital)

Pareto NBD MCMC

April 15, 2016 1 / 21

2 Maximum Likelihood Estimation

3 Markov Chain Monte Carlo

- The Bayesian point view
- Metropolis-Hastings algorithm
- Gibbs sampler

Assumption

- $[x|\lambda, \tau, T] \sim poisson(\lambda t), t = min(\tau, T)$
- $[\tau|\mu] \sim exp(\mu)$
- Choice of Prior
 - $[\lambda|r,\alpha] \sim gamma(r,\alpha)$
 - $[\mu|s,\beta] \sim gamma(s,\beta)$
- Nice choice of prior leads to close-form likelihood and other convenient consequences.

Data

- Dimension: customer i for $i \in \{1 \cdots N\}$
- Individual level summary statistics: x_i, tx_i, T_i
- Latent variables
 - Purchase rate: λ_i
 - Lifetime: μ_i
- Heterogeneity Parameters
 - **r**, α
 - **a**, β
- DAG

Likelihood $\mathcal{L}(\theta|D)$

Likelihood is probability of observing the given data as a function of θ . $\mathcal{L}(\theta|D) = \mathbb{P}(D|\theta)$

MLE In English

Assume $\theta, \theta^*, \mathcal{L}(\theta^*|D) > \mathcal{L}(\theta|D)$, this means given the observed data θ^* is more "likely" to be the values for model parameters.

Estimation

- Maximize likelihood = Maximize log-likelihood = Minimize -(log-likelihood)
- The problem of local vs global minimum
- Choice of minimizer

Image: Image:

Pareto NBD likelihood

Latent variable level likelihood: P(x, tx, T|λ, μ)
τ > T:

$$\mathcal{L}(\lambda,\mu|\tau > T, x, tx) = \frac{\lambda^{x} \cdot tx^{x-1} \cdot e^{-\lambda tx}}{\Gamma(x)} \cdot e^{\lambda(T-tx)} \cdot e^{-\mu T}$$

• $tx < \tau < T$:

$$\mathcal{L}(\lambda,\mu|\tau < T, x, tx) = \frac{\lambda^{x} \cdot tx^{x-1} \cdot e^{-\lambda tx}}{\Gamma(x)} \cdot e^{\lambda(\tau-tx)} \cdot \mu e^{-\mu\tau}$$

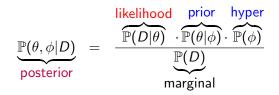
 Heterogeneity parameter level likelihood, i.e. the probability of individual's transaction given r, α, s, β for a random customer

$$\mathbb{P}[X = x | r, \alpha, s, \beta, T] = \mathbb{P}[X = x | r, \alpha, \tau > T] \mathbb{P}[\tau > T | s, \beta] \\ + \int_0^T \mathbb{P}[X = x | r, \alpha, \tau > t] f(t | s, \beta) dt$$

• "Nice" heterogeneity params distribution \Rightarrow close-form solution.

The Bayesian point view

- Frequentist: one answer, Bayesian: a set of answers with different weights
- Bayes Theorem



- Likelihood encodes our belief on the relationship among the parameters and the data.
- Prior encodes our belief on the parameters. "Nice" = Conjugate.
- Hyperparameter controls latent variables, usually set flat and known.
- Posterior indicates the how well the reality fits the model.
- Goal: simulate posterior so that we can learn more from the model.

Pareto NBD MCMC

Markov Process

Mathematically, given a sequence of random variables $\{X_1, X_2, \dots, X_T\}$ representing a stochastic process, a process has the Markov property if: $\mathbb{P}(X_{t+1} \mid X_1, X_2, X_3, \dots X_t) = \mathbb{P}(X_{t+1} \mid X_t)$

Get posterior with MCMC

By constructing a MCMC whose stationary state is the desired distribution, i.e. the posterior, we are effectively drawing each iteration from the posterior once MCMC converges.

How to implement MCMC

Metropolis-Hastings algorithm, and its special case Gibbs sampler

イロト イヨト イヨト

- A random walk that uses an acceptance/rejection rule to converge to the specified target distribution.
- What we need
 - Posterior distribution $\mathbb{P}(\theta^*|D), \mathbb{P}(\theta^{t-1}|D)$
 - Proposal distribution/jumping distribution $J_t(\theta^*|\theta^{t-1})$
 - Proposal distribution needs to be symmetric!
- Algorithm
 - Initialize the chain with θ^0 .
 - For $t = 1, 2, \cdots$
 - Sample θ^* from $J_t(\theta^*|\theta^{t-1})$.
 - Calculate the ratio $r = \frac{\mathbb{P}(\theta^*|D)}{\mathbb{P}(\theta^{t-1}|D)}$
 - Accept probability $\alpha = \min(1, r)$
 - Implementation: generate $u \sim uniform(0, 1)$. If r < u, then accept θ^* , else keep θ^{t-1}

Why does Metropolis algorithm work?

- The goal of MCMC is to construct a Markov chain such that its unique stationary distribution is the posterior distribution.
 - Stationary distribution of a Markov chain: the Markov chain converges to a state that θ_t for $\forall t$ has the same distribution.
 - Goal: prove $\mathbb{P}(\theta^t = \theta^*) = \mathbb{P}(\theta^{t-1} = \theta^*)$
- Assume θ_a, θ_b s.t $\mathbb{P}(\theta_b|D) > \mathbb{P}(\theta_a|D)$.
 - $\mathbb{P}(\theta^{t-1} = \theta^a, \theta^t = \theta^b) = \mathbb{P}(\theta_a | D) \cdot J_t(\theta_b | \theta_a) \cdot r, r = 1$ due to our assumption

•
$$\mathbb{P}(\theta^{t-1} = \theta^b, \theta^t = \theta^a) = \mathbb{P}(\theta_b | D) \cdot J_t(\theta_a | \theta_b) \cdot r, r = \left(\frac{\mathbb{P}(\theta_a | D)}{\mathbb{P}(\theta_b | D)}\right)$$

- By doing some math we will have

 𝔅(θ^{t-1} = θ^b, θ^t = θ^a) = 𝔅(θ_a|D) * J_t(θ_a|θ_b) = 𝔅(θ^{t-1} = θ^a, θ^t = θ^b),
 since the proposal density J_t(·|·) is symmetric.
- $\mathbb{P}(\theta|D)$ is the same despite the choice of $\theta \Rightarrow$ the posterior distribution $\mathbb{P}(\theta|D)$ is the stationary distribution of the Markov Chain of θ .

Metropolis Hastings algorithm

- Metropolis-Hastings algorithm relaxes the constrain on the proposal distribution, so that J(·|·) is not required to be symmetric
- Instead, change $r = \frac{\mathbb{P}(\theta^*|D)/J_t(\theta^*|\theta^{t-1})}{\mathbb{P}(\theta^{t-1}|D)/J_t(\theta^{t-1}|\theta^*)}$. The rest of the algorithm remains the same.
- See appendix for why MH algorithm works.
- Gibbs sampler is a special case of MH, where r = 1.

$$J(\theta^*|\theta^{t-1}) = \mathbb{P}(\theta_j^*|\theta_{-j}^{t-1}, D), \theta_{-j}^* = \theta_{-j}^{t-1}$$

$$r = \frac{\mathbb{P}(\theta^*|D)/J_t(\theta^*|\theta^{t-1})}{\mathbb{P}(\theta^{t-1}|D)/J_t(\theta^{t-1}|\theta^*)} = \frac{\mathbb{P}(\theta^*_j, \theta^*_{-j}|D)/\mathbb{P}(\theta^*_j|\theta^{t-1}_{-j}, D)}{\mathbb{P}(\theta^{t-1}_j, \theta^{t-1}_{-j}|D)/\mathbb{P}(\theta^{t-1}_j|\theta^{t-1}_{-j}, D)} \\ = \frac{\mathbb{P}(\theta^*_j|\theta^{t-1}_{-j}, D)\mathbb{P}(\theta^{t-1}_{-j}|D)/\mathbb{P}(\theta^*_j|\theta^{t-1}_{-j}, D)}{\mathbb{P}(\theta^{t-1}_j|\theta^{t-1}_{-j}, D)\mathbb{P}(\theta^{t-1}_{-j}|D)/\mathbb{P}(\theta^{t-1}_j|\theta^{t-1}_{-j}, D)} = 1$$

- Update certain parameter given rest of parameters according to conditional posterior distribution.
- When to use Gibbs sampler
 - When conditional posterior is well defined and easy to sample from.
 - $\bullet \ \Rightarrow \mathsf{Conjugate} \ \mathsf{Prior}$
- What we need
 - $\theta = \{\theta_1, \cdots, \theta_J\}$
 - $[\theta_j | \theta_{-j}^{t-1}, D] \Rightarrow$ conditional posterior distribution of one parameter given the rest of parameters at t-1.
 - Notice, at t, the above distribution is calculated with parameters that are updated already at iteration t and parameters that are not yet updated at t-1.
- Algorithm
 - initialize $\theta^{(0)}$
 - For $t = 1, 2, \cdots$, update $\theta_1^{(t)}, \theta_2^{(t)}, \cdots \theta_J^{(t)}$ in turn.

- The result of MCMC algorithm is a sample of posterior distribution.
- Simple example, let's look at the gamma data generating process. $x_i \stackrel{iid}{\sim} gamma(\alpha, \beta).$
 - Histogram: bin the samples according to the value p.
 - Density: $\int_0^{\infty} f(x) = 1 \Rightarrow \sum_{i=0}^{N} [b(i) b(i-1)]d(mid(i))$, s.t d(mid(i)) has the same ratio given by frequency
 - Quantile: solve cdf $F(x) = \alpha$ where α is the quantile.
- Credible interval: the subset of posterior parameter space C s.t $\int_{C} f(\theta|D) d\theta = 1 \alpha$.
 - If θ_L^* is the $\alpha/2$ posterior quantile for θ , and θ_U^* is the 1α posterior quantile for θ , then (θ_L^*, θ_U^*) is a $100(1\alpha)\%$ credible interval for θ .
 - Which means, given the observed data there is a 1α % probability the true value of θ falls in to the above interval.
- HPD interval: what if the density is highly skewed?
 - additional condition on $C = \{\theta : f(\theta|D) \ge k\}$, k is the horizontal line at 1α .

- "Burn-in": discarding early iterations of the simulation runs \Rightarrow eliminating unrepresentative samples
- "Thinning": dependence of the iterations in each sequence (within-sequence correlation) ⇒ achieving the effect of random draws.
- Visualization:
 - Trace plot
 - Running mean plot
 - Auto-correlation plot: Auto-correlation *pk* is the correlation between a certain draw and its *k*th lag.
- Gelman and Rubin diagnostic
 - Running multiple chain from over-dispersed starting points. Calculating within and between sequence variance (B, W) to approximate marginal posterior variance $(var(\theta|D))$.
 - Scale reduction factor R = √ (var(θ|D))/W. If R > 1, then further simulations are needed.

- A combined approach: Gibbs sampler for latent variables, and MH algorithm for r,α,s,β
- Original flavor: assumptions remain the same
 - $[\lambda_i | \tau_i, x_i, T_i, r, \alpha] \sim gamma(r + x, \alpha + min(\tau, T_i))$
 - $[\mu_i | \tau_i, s, \beta] \sim gamma(s, \beta + T_i), \tau > T; gamma(s + 1, \beta + \tau_i), o.w.$
 - $[\tau_i | tx_i, T_i, \lambda_i, \mu_i]$ two cases based on $\mathbb{P}(\tau_i > T_i | \lambda_i, \mu_i, D_i)$
 - Flip a coin with weight $p = \frac{1}{1 + \mu_i/(\lambda_i + \mu_i)[exp((\lambda_i + \mu_i)(T_i tx_i)) 1]}$ to decide whether still alive at T_i
 - If alive $\tau_i = T_i + rexp(\mu_i)$ exponential is memoryless.
 - If dead $\tau_i \sim$ Double truncated exponential distribution with mean $1/(\lambda_i + \mu_i)$ in $[tx_i, T_i]$.
 - Derive the CDF of the above distribution.
 - Inverse sampling: generate u ~ uniform(0, 1) solve F(x) = u, x is the next step.

Pareto/NBD MCMC: update hyper-parameters

- Conjugate priors for gamma parameters (r, α), (s, β) are not easy to sample directly from. ⇒ MH step
- Let $\phi = \{p, q, s, r\}$ be the set of hyperparameters and $\theta = \{\lambda, \mu\}$ be the latent variables. The posterior $\mathbb{P}(\phi|D) \propto \mathbb{P}(D|\phi) \cdot \mathbb{P}(\phi) \propto \mathbb{P}(D|\theta) \cdot \mathbb{P}(\theta|\phi)$
 - For a gamma process: data $x_1, \dots, x_n \stackrel{iid}{\sim} gamma(\alpha, \beta)$

$$\mathbb{P}(X|\alpha,\beta) \propto \frac{P^{\alpha-1}exp(-\beta S)}{(\Gamma(\alpha)^r\beta^{-\alpha})^n}$$

where
$$P = \prod_{i=1}^{n} x_i, S = \sum_{i=1}^{n} x_i$$

• $[\alpha|p,q] \sim gamma(p,q), [\beta|r,s] \sim gamma(r,s)$
• $\mathbb{P}(\phi|D) \propto \frac{P^{\alpha-1} \cdot exp(-\beta S)}{(\Gamma(\alpha)'\beta^{-\alpha})^n} \cdot \alpha^{p-1} \cdot exp(-q\alpha) \cdot \beta^{r-1} \cdot exp(-S\beta)$

• BTYDplus approach: Slice Sampling (Neal R.M. 2003).

Pareto/NBD MCMC Continued

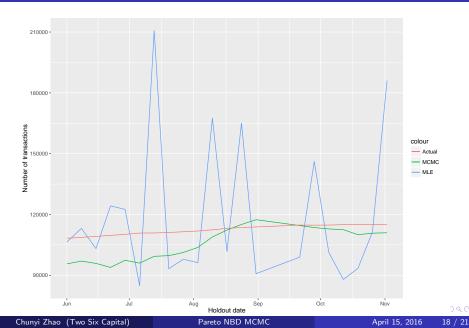
- New flavor: purchase rate and lifetime are correlated
 - Individuals' purchase rates and dropout rates follow a multivariate lognormal distribution.

$$\begin{bmatrix} log(\lambda) \\ log(\mu) \end{bmatrix} \sim MVN \left(\beta_0 = \begin{bmatrix} \beta_\lambda \\ \beta_\mu \end{bmatrix}, \Gamma_0 = \begin{bmatrix} \sigma_\lambda^2 \sigma_{\lambda\mu} \\ \sigma_{\mu\lambda} \sigma_\mu^2 \end{bmatrix} \right)$$
(1)

Algorithm

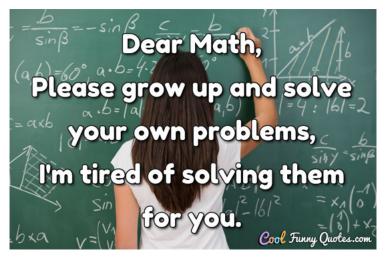
- Initialize the algorithm with θ_i^0 at the individual level. $\theta_i = \begin{bmatrix} \lambda_i \\ \mu_i \end{bmatrix}$
- For each individual,
 - sample z_i , i.e. whether alive at T_i , according to $\mathbb{P}(\tau_i > T_i | \lambda_i, \mu_i, D_i)$
 - If dead, sample τ_i using a truncated exponential
 - MH step \Rightarrow Update θ_i^{t-1} using posterior $\mathbb{P}(\lambda_i, \mu_i, z_i, \tau_i | x_i, tx_i, T_i)$ (likelihood \cdot prior)
 - MH step \Rightarrow Update $[\beta_0^t, \Gamma_0^t]$ according to standard multivariate normal regression update.
 - * Draw θ_i^t from MVN($\beta d_i, \Gamma_0$) where d_i is individual level covariates $\theta_i = \beta d_i + e_i$, where $e_i \sim MVN(0, \Gamma_0)$

Pareto/NBD MCMC: predicative power tentative



- Makoto Abe: "Counting Your Customers" One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model
- Lawrence Rabiner: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
- Daniel Fink: A Compendium of Conjugate Priors
- Gelman et al: Bayesian Data Analysis
- Google: conjugate prior; sum of iid exponential is gamma; memoryless property of exponential...

The End



- Idea of conjugacy: the posterior and the prior distribution lives in the same family. In this case, the prior is called the conjugate prior for the likelihood.
- The exponential family basically covers the distribution we usually use. All distributions in exponential family when used as likelihood have conjugate priors.
- Here are a couple conjugate relationships we used in our models:
 - Bernoulli likelihood has beta as conjugate prior, and beta posterior.
 - Poisson likelihood has gamma as conjugate prior, and gamma posterior.