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Overview

@ Pareto/NBD
© Maximum Likelihood Estimation

© Markov Chain Monte Carlo
@ The Bayesian point view
@ Metropolis-Hastings algorithm
@ Gibbs sampler
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Pareto/NBD Model

@ Assumption
o [x|\, 7, T] ~ poisson(At), t = min(t, T)
o [r]u] ~ exp(n)
@ Choice of Prior
o [Alr,a] ~ gamma(r, a)
o [uls,B] ~ gamma(s, )
@ Nice choice of prior leads to close-form likelihood and other
convenient consequences.
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Pareto/NBD Data structure

@ Data

o Dimension: customer i for i € {1--- N}
e Individual level summary statistics: x;, tx;, T;

@ Latent variables
o Purchase rate: \;

o Lifetime: u;

@ Heterogeneity Parameters
°or,a
e a,p

o DAG
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Maximum Likelihood Estimation

Likelihood £(6|D)

Likelihood is probability of observing the given data as a function of 6.
L(6|D) = P(D|0)

MLE In English

Assume 6,0*, L(6*|D) > L(0|D), this means given the observed data 6* is
more "likely” to be the values for model parameters.

v

Estimation
@ Maximize likelihood = Maximize log-likelihood = Minimize
-(log-likelihood)

@ The problem of local vs global minimum

@ Choice of minimizer
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Pareto NBD likelihood

o Latent variable level likelihood: P(x, tx, T |\, 1)
o 7> T:

X x—1 —Atx
N e AT T

L, p|t> T,x,tx) = 16

o tx<T<T:

Nt x—1 , j—Atx
L, plt < Tox,tx) = XTX)E . eMr—tx)

@ Heterogeneity parameter level likelihood, i.e. the probability of
individual's transaction given r, «, s, 3 for a random customer

P[X = x|r,a,s, 8, T] = P[X = x|r,a,7 > T|P[r > T]|s, ]

T
+/ P[X = x|r,a, 7 > t]f(t]s, 5)dt
0

@ "Nice" heterogeneity params distribution = close-form solution.
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The Bayesian point view

Frequentist: one answer, Bayesian: a set of answers with different
weights

Bayes Theorem
likelihood ~ prior hyper

—
P(DI6) -P(0]9)- P

)

})
P(6,¢|D) =
(0,9ID) 50)
posterior =
marginal

Likelihood encodes our belief on the relationship among the
parameters and the data.

Prior encodes our belief on the parameters. "Nice” = Conjugate.
Hyperparameter controls latent variables, usually set flat and known.
Posterior indicates the how well the reality fits the model.

Goal: simulate posterior so that we can learn more from the model.
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Markov Chain Monte Carlo

Markov Process

Mathematically, given a sequence of random variables { X1, Xa,--- , X7}
representing a stochastic process, a process has the Markov property if:
]P)(Xt+1 \ xSl 20y G © "Xt) = IP>(Xt+1 ‘ Xt)

Get posterior with MCMC

By constructing a MCMC whose stationary state is the desired
distribution, i.e. the posterior, we are effectively drawing each iteration
from the posterior once MCMC converges.

How to implement MCMC
Metropolis-Hastings algorithm, and its special case Gibbs sampler
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Metropolis algorithm

@ A random walk that uses an acceptance/rejection rule to converge to
the specified target distribution.

o What we need
o Posterior distribution P(6*|D),P(9*~}| D)
o Proposal distribution/jumping distribution J,(6*]6t~1)
e Proposal distribution needs to be symmetric!

o Algorithm

o Initialize the chain with 6°.

e Fort=1,2,---
Sample 6* from J,(8*|0"71).
Calculate the ratio r = %

Accept probability o = min(1,r)
Implementation: generate u ~ uniform(0,1). If r < u, then accept 6%,

else keep 671
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Why does Metropolis algorithm work?

@ The goal of MCMC is to construct a Markov chain such that its
unique stationary distribution is the posterior distribution.
e Stationary distribution of a Markov chain: the Markov chain converges
to a state that 6, for Vt has the same distribution.
o Goal: prove P(6t = 0*) = P(9*~ = ¢*)
o Assume 6,,0p s.t P(0p|D) > P(0,]D).
o P(9'1 = 62,0t = 6°) = P(0,|D) - Jr(0p]0,) - r,r = 1 due to our
assumption
o P(6%1 = 0°, 0% = 07) = P(05]D) - Je(0:05) - r. r = (E{gip))
e By doing some math we will have
P(0t~1 = 0P, 0 = 0%) = P(0,| D) * J:(0.|60) = P(0 L = 62,6t = 0P),
since the proposal density J;(:|-) is symmetric.
e P(0|D) is the same despite the choice of § = the posterior distribution
P(0|D) is the stationary distribution of the Markov Chain of 6.
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Metropolis Hastings algorithm

@ Metropolis-Hastings algorithm relaxes the constrain on the proposal
distribution, so that J(-|-) is not required to be symmetric

@ Instead, change r = P%?j‘ﬂfg;;fj;ﬁ;;,z). The rest of the algorithm

remains the same.

@ See appendix for why MH algorithm works.

@ Gibbs sampler is a special case of MH, where r = 1.

J(O%10°7Y) = B(6;10" 1, D), 0% ; = 0%

_ BED)/A(O10 Y _ P(;.0,ID)/P(E;165 D)
R T1D)/ 4119 B 0711D)/2(6; 075" 0)

x| gt—1 t—1 x| gt—1
B(0; 0%, DYP(8" D) /B(6; 10", D)

 P(0t0tt, D)P(6*; Y D) /(6! |0t D)
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Gibbs Sampler

@ Update certain parameter given rest of parameters according to
conditional posterior distribution.
@ When to use Gibbs sampler
e When conditional posterior is well defined and easy to sample from.
e = Conjugate Prior
@ What we need
o 0 ={0,---,0,}
° [91-\9:1, D] = conditional posterior distribution of one parameter given
the rest of parameters at t-1.
o Notice, at t, the above distribution is calculated with parameters that
are updated already at iteration t and parameters that are not yet
updated at t-1.

o Algorithm
o initialize 6(©)
e Fort=1,2,---, update 9@, th), e Qst) in turn.
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From MCMC to posterior

@ The result of MCMC algorithm is a sample of posterior distribution.
° Slmple example, let's look at the gamma data generating process.

xi ™ gamma(a, 3).
e Histogram: b|n the samples accordmg to the value p.
o Density: [~ f(x)=1= Z, olb(i) — b(i — 1)]d(mid(i)), s.t d(mid(i))

has the same ratlo given by frequency
o Quantile: solve cdf F(x) = a where « is the quantile.
@ Credible interval: the subset of posterior parameter space C s.t
Jof(8|D)df =1 — au.
o If 6] is the /2 posterior quantile for 8, and 8}, is the 1o posterior
quantile for 6, then (0}, 60},)is a 100(1c)% credible interval for 6.
o Which means, given the observed data there is a 1 — a% probability
the true value of @ falls in to the above interval.
o HPD interval: what if the density is highly skewed?

o additional condition on C = {0 : f(0|D) > k}, k is the horizontal line
atl —a.
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Convergence Diagnosis

@ "Burn-in": discarding early iterations of the simulation runs =
eliminating unrepresentative samples

@ "Thinning”: dependence of the iterations in each sequence
(within-sequence correlation) = achieving the effect of random draws.

@ Visualization:

e Trace plot
e Running mean plot
o Auto-correlation plot: Auto-correlation pk is the correlation between a

certain draw and its k%" lag.
@ Gelman and Rubin diagnostic
o Running multiple chain from over-dispersed starting points. Calculating
within and between sequence variance (B, W) to approximate marginal
posterior variance (var(0|D)).
o Scale reduction factor R = \/%. If R > 1, then further
simulations are needed.
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Pareto/NBD MCMC

@ A combined approach: Gibbs sampler for latent variables, and MH
algorithm for r, a, s, 8
@ Original flavor: assumptions remain the same
o [Ai|mi,x;, Tiy rya] ~ gamma(r + x, a + min(t, T;))
o [uilTi,s, B8] ~ gamma(s,+ T;),7 > T,gamma(s+ 1,8+ 7;), 0.w.
o [7i|txi, Ti, \i, pii] two cases based on P(7; > T;|A;, pi, D)
o Flip a coin with weight p =
whether still alive at T;
o If alive 7; = T; + rexp(ui) exponential is memoryless.
o If dead 7; ~ Double truncated exponential distribution with mean
1/(Ai + i) in [tx;, T7.
o Derive the CDF of the above distribution.

o Inverse sampling: generate u ~ uniform(0,1) solve F(x) = u, x is the
next step.

: .
T T T e (T (0 decide
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Pareto/NBD MCMC: update hyper-parameters

e Conjugate priors for gamma parameters (r, ), (s, 3) are not easy to
sample directly from. = MH step

o Let ¢ = {p, q,s,r} be the set of hyperparameters and § = {\, u} be
the latent variables. The posterior

P(¢|D) x P(D|¢) - P(¢) < P(DI0) - P(0]¢)

iid
e For a gamma process: data xq,--- ,x, ~ gamma(c, 3)

P~lexp(—3S)

IP)(X|a’ /8) X (r(a)rﬂfa)n

where P =], x, 5 =>1 %
o [alp.q] ~ gamma(p, q). [5|r, s] ~ gamma(r,s)
o P(¢|D) ox ErsPlofS) a1 exp(—qa) - B - exp(—SB)
e BTYDplus approach: Slice Sampling (Neal R.M. 2003).
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Pareto/NBD MCMC Continued

@ New flavor: purchase rate and lifetime are correlated

e Individuals’ purchase rates and dropout rates follow a multivariate
lognormal distribution.

ot~ = [P 0] o

o Algorithm

o Initialize the algorithm with 69 at the individual level. 6; = [)\']
1
e For each individual,
e sample z;, i.e. whether alive at T;, according to P(r; > Ti|\i, ui, D;)
o If dead, sample 7; using a truncated exponential
o MH step = Update 0/™! using posterior P(\;, ui, zi, 7i|xi, txi, T7)
(likelihood - prior)
e MH step = Update [8§, ['§] according to standard multivariate normal
regression update.
e * Draw 0! from MVN(8d;, o) where d; is individual level covariates
0; = Bd; + e, where ei ~ MVN(0, o)
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Pareto/NBD MCMC: predicative power tentative
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References and Further Reading

@ Makoto Abe: " Counting Your Customers” One by One: A Hierarchical
Bayes Extension to the Pareto/NBD Model

@ Lawrence Rabiner: A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition

@ Daniel Fink: A Compendium of Conjugate Priors
@ Gelman et al: Bayesian Data Analysis

@ Google: conjugate prior; sum of iid exponential is gamma; memoryless
property of exponential...
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The End
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Appendix A: Conjugate Priors

@ ldea of conjugacy: the posterior and the prior distribution lives in the
same family. In this case, the prior is called the conjugate prior for the
likelihood.

@ The exponential family basically covers the distribution we usually
use. All distributions in exponential family when used as likelihood
have conjugate priors.

@ Here are a couple conjugate relationships we used in our models:

e Bernoulli likelihood has beta as conjugate prior, and beta posterior.
e Poisson likelihood has gamma as conjugate prior, and gamma posterior.
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